PROFESSIONAL FITTING AND INFORMATION GUIDE

Clariti (somofilcon A)
Clariti Toric (somofilcon A)
Clariti Multifocal (somofilcon A)

Soft (hydrophilic) Contact Lenses for Daily Wear
with UV Blocker

IMPORTANT: This Professional Fitting and Information Guide contains important information and instructions. Please read carefully and keep this information for future use.

CAUTION: Federal law (USA) restricts this device to sale by or on the order of a licensed Eye Care Professional.
Table of Contents

- **INTRODUCTION** .. 3
- **PRODUCT DESCRIPTION** .. 3
- **LENS PARAMETERS AVAILABLE** .. 4
- **TRANSMITTANCE CURVES** .. 5
- **INDICATIONS (USES)** ... 6
- **CONTRAINDICATIONS, WARNINGS, PRECAUTIONS AND ADVERSE REACTIONS** 7
- **FITTING GUIDELINES** .. 7
- **WEARING AND APPOINTMENT SCHEDULE** ... 18
- **LENS APPLICATION AND REMOVAL** ... 18
- **LENS CARE DIRECTIONS** .. 20
- **HOW SUPPLIED** .. 22
- **REPORTING OF ADVERSE REACTIONS** .. 22
INTRODUCTION

Clariti (somofilcon A) Soft (hydrophilic) Contact Lenses with UV Blocker are made from somofilcon A with a water content of 56%.

This Fitting Guide has been developed to provide practitioners with information covering characteristics of Clariti (somofilcon A) Soft (hydrophilic) Contact Lenses with UV Blocker and to illustrate fitting procedures. Please read carefully and keep this information for future use.

PRODUCT DESCRIPTION

Clariti (somofilcon A) Soft (hydrophilic) Contact Lens with UV Blocker is a hydrophilic co-polymer of silicone containing monomers and hydrophilic monomers which is cross-linked with tetraethyleneglycol dimethacrylate.

When hydrated the lens consists of 44.0% somofilcon A and 56.0% water by weight of saline immersed in normal saline. A benzophenone UV absorbing monomer is used to block UV radiation.

The average transmittance characteristics are less than 5% in the UVB range of 280 to 315nm and less than 50% in the UVA range of 316-380nm

The lens contains a UV Blocker and has a hemispherical flexible shell, which covers the cornea and a portion of the adjacent sclera, with the following dimensions:

- Chord Diameter: 13.0mm to 15.5mm
- Center Thickness: 0.03mm to 0.50mm
- Base Curve: 7.5mm to 9.30mm
- Powers: -20.00 DS to +20.00 DS
- Toric Cylinder options: -0.75, -1.25, -1.75 and -2.25
- Toric Axis options: 10° to 180° (10° steps).
- Multifocal Add:

Lens “LOW” = “low” for spectacle near ADD lens (Max +2.25 ADD)
Lens “HIGH” = “high” for spectacle near ADD lens (+2.50 ADD or greater)

The physical/optical properties of the lenses are:

- Refractive Index: 1.4003
- %Transmittance @ 590nm: 98.13
- %Transmittance @ 280-315nm: 0.71
- %Transmittance @ 316-380nm: 20.62
- Surface Character: Hydrophilic
- Water Content: 56%
CLARITI CONTACT LENS

- Oxygen Permeability (DK): \(60 \times 10^{-11} \text{ (cm}^2/\text{sec)} \) (ml O2/ml x mmHg) at 35°C (Fatt Method for determination of oxygen permeability).

- Specific Gravity: 1.17

LENS PARAMETERS AVAILABLE

The lenses are available as follows:

Clariti (somofilcon A)

Sphere Powers: +20.00 to –20.00 DS
Center Thickness: varies with power e.g. 0.07mm (at -3.00 DS)
Diameter: 13.0 through to 15.5mm
Base Curve: 7.50 through to 9.30mm

Clariti Toric (somofilcon A)

Sphere Powers: +20.00 to –20.00 DS
Center Thickness: varies with power e.g. 0.105mm (at -3.00 DS)
Diameter: 13.0 through to 15.5mm
Base Curve: 7.50 through to 9.30mm
Cylinder Options: -0.75, -1.25, -1.75, -2.25
Axis: 10° to 180° (10° steps)

Clariti Multifocal (somofilcon A)

Sphere Powers: +20.00 to –20.00 DS
Center Thickness: varies with power e.g. 0.07mm (at -3.00 DS)
Diameter: 13.0 through to 15.5mm
Base Curve: 7.50 through to 9.30mm

Add powers are to be prescribed dependent on specific patient requirements as determined by the Eye Care Professional; however as a guide, the lenses come in the following ADD powers:

- Lens “LOW” = “low” for spectacle near ADD lens (Max +2.25 ADD)
- Lens “HIGH” = “high” for spectacle near ADD lens (+2.50 ADD or greater)

ACTIONS

In its hydrated state, Clariti (somofilcon A) Soft (hydrophilic) Contact Lens with UV Blocker when placed on the cornea act as a refracting media to focus light rays on the retina.
TRANSMITTANCE CURVES

The transmittance curve below compares Clariti (somofilcon A) Soft (hydrophilic) Frequent Replacement Contact Lens with UV Blocker, a 24 yr. old human cornea and 25 yr. old human crystalline lens.

Key:

- Clariti UV (Somofilcon A with UV blocker) soft contact lens with UV blocker. Curve shown is for a -6.00D lens with a centre thickness 0.070 mm, which represents the transmittance characteristics of the thinnest version of this UV-absorbing lens to be marketed.

- 24 year old human cornea *1

- 25 year old crystalline lens *2

1. Lerman, S., Radiant Energy and the eye, MacMillan, New York, 1980, p.58, fig 2-21
WARNING:

UV-absorbing contact lenses are not substitutes for protective UV-absorbing eyewear such as UV-absorbing goggles or sunglasses because they do not completely cover the eye and the surrounding area. You should continue to use absorbing eyewear as directed.

Note:
Long-term exposure to UV radiation is one of the risk factors associated with cataracts. Exposure is based on a number of factors such as environmental conditions (altitude, geography, cloud cover) and personal factors (extent and nature of outdoor activities). UV-blocking contact lenses help provide protection against harmful UV radiation. However, clinical studies have not been done to demonstrate that wearing UV-blocking contact lenses reduces the risk of developing cataracts or other eye disorders. Consult your Eye Care Practitioner for more information.

INDICATIONS (USES)

The CLARITI (somofilcon A) Soft (hydrophilic) Contact Lens with UV blocker is indicated for frequent replacement wear for the correction of refractive ametropia (myopia and hyperopia) in phakic or aphakic persons with non-diseased eyes that may exhibit astigmatism up to 2.00 Diopters that does not interfere with visual acuity.

The CLARITI TORIC (somofilcon A) Soft (hydrophilic) Contact Lens with UV blocker is indicated for frequent replacement wear for the optical correction of refractive ametropia (myopia and hyperopia) in phakic or aphakic persons with non-diseased eyes that may exhibit astigmatism up to 10.00 Diopters.

The CLARITI MULTIFOCAL (somofilcon A) Soft (hydrophilic) Contact Lens with UV blocker is indicated for frequent replacement wear for the optical correction of refractive ametropia (myopia and hyperopia) and/or presbyopia in phakic or aphakic persons with non-diseased eyes that may require a reading addition of +3.00 Diopters or less and may exhibit astigmatism up to 1.50 Diopters or less.

The lenses may be prescribed for daily wear with removal for cleaning and disinfection (chemical, not heat) prior to reinsertion as recommended by the eye care professional.

Clariti (somofilcon A) Soft (hydrophilic) Contact lens with UV blocker help protect against transmission of harmful UV radiation to the cornea and into the eye.
CONTRAINDICATIONS, WARNINGS, PRECAUTIONS AND ADVERSE REACTIONS

See the package insert for INDICATIONS, CONTRAINDICATIONS, WARNINGS, PRECAUTIONS, AND ADVERSE EFFECTS.

FITTING GUIDELINES

1. GENERAL FITTING INSTRUCTIONS

Patient Selection

- **Clariti (somofilcon A) Soft Contact Lenses** are indicated for the correction of ametropia (myopia or hyperopia), and mild astigmatism (no more that 2.00 diopters) in aphakic and non-aphakic persons with non-diseased eyes.

- **Clariti (somofilcon A) Toric Soft Contact Lenses** are indicated for the correction of ametropia (myopia or hyperopia), and astigmatism corrections in aphakic and non-aphakic persons with non-diseased eyes.

- **Clariti (somofilcon A) Multifocal Soft Contact Lenses** are indicated for the correction of ametropia (myopia or hyperopia), and emmetropia with presbyopia in aphakic and non-aphakic persons with non-diseased eyes.

- Persons who require only vision correction and who would not or could not adhere to a recommended care regimen or are unable to place and remove the lenses should not be provided with them. Failure to follow handling and wearing instructions could lead to serious eye infections, which might result in corneal ulcers.

- Patient communication is vital because it relates not only to patient selection, but also to ensuring patient compliance. It is also necessary to discuss the information contained in the Patient Information Booklet with the patient at the time of the initial examination.

- Patients selected to wear the lenses should be chosen for their motivation to wear contact lenses, general health and co-operation. The eye care practitioner must take care in selecting, examining and instructing contact lens patients. Patient hygiene and willingness to follow practitioner instructions are essential to their success.

- Patients who do not meet this criteria should not be provided with contact lenses.

Pre-fitting Examination

- A detailed history is crucial to determining patient needs and expectations. Your patient should be questioned regarding vocation, desired lens wearing time (full or part-time), and desired lens usage (reading, recreation or hobbies).
CLARITI CONTACT LENS

• Initial evaluation of the trial lens should be preceded by a complete eye examination, including visual acuity with and without correction at both distance and near, keratometry and slit lamp examination.

• Perform a preliminary evaluation to determine distance refraction as well as to rule out contraindications to contact lens wear described in the Package Insert.

• Lens power is determined from the patient’s spherical equivalent prescription corrected to the corneal plane.

1. Place lens on the eye. Allow the lens to remain on the eye long enough to achieve a state of equilibrium. Small variation in the tonicity, pH or the lens solutions and individual tear composition may cause slight changes in fitting characteristics.

• If the initial lenses selection covers the patient’s cornea fully, provides discernible movement (0.10mm to 0.30mm) after blink, is comfortable for the patient and provides satisfactory visual performance, it is a well fitted lens and can be dispensed (see Criteria for a Well-Fitted Lens under clinical assessment below).

Clinical Assessment

1. Criteria for a Well-Fitted Lens:
 - 0.5 to 1.0 mm movement in primary gaze
 - 1.0 mm to 1.5 mm movement in upgaze
 - Centration in primary gaze

2. Characteristics of a Tight Lens
 - <0.5 mm movement in primary or upgaze

3. Characteristics of a Loose Lens
 - >1.0 mm movement in primary gaze
 - >1.5 mm movement in upgaze
 - Poor centration in primary and upgaze

• Full coverage of the cornea is defined as the lens edge extending beyond the limbal area in all directions. Initial lens evaluation must be done after at least 10 minutes of lens wear to allow the lens to stabilize and any tearing to subside.

• Following a blink, the lens should move vertically on the patient’s eye about 0.1mm to 0.30mm. Using a slit lamp this movement can be estimated by comparing it with the one millimeter lens peripheral bevel width.

• When lenses are dispensed for vision correction, the wearer must be supplied with an appropriate wearing regimen and must fully understand all lens handling and emergency lens care instructions to prevent lens damage as described in the Package Insert and the Patient Information Booklet.
Follow-up Care

a) Follow-up examinations are necessary to ensure continued successful contact lens wear. From the day of dispensing and optimum follow-up schedule for daily wear is recommended.

b) Prior to a follow-up examination, the contact lens should be worn for at least 6 to 8 hours and the patient should be asked to identify any problems which might be occurring related to contact lens wear.

c) With lenses in place on the eyes, evaluate a fitting performance to assure that Criteria for a Well Fitted Lens continue to be satisfied. Examine the lenses closely for surface deposition and/or damage.

d) After lens removal, instill sodium fluorescein (unless contraindicated) into the eyes and conduct a thorough biomicroscopy examination.
 - Presence of vertical corneal striae in the posterior central cornea and/or corneal neovascularization is indicative of excessive cornea edema.
 - Presence of corneal staining and/or limbal-conjunctival hyperemia can be indicative of an unclean lens, a reaction to solution preservatives, excessive lens wear and/or poorly fitting lens.
 - Papillary conjunctival changes may be indicative of an unclean and/or damaged lens.

If any of the above observations are judged abnormal, various professional judgements are necessary to alleviate the problem and restore the eye to optimal conditions. If the Criteria of a Well-Fitted Lens is not satisfied during any follow-up examination, the patient should be re-fitted with a more appropriate lens.

2. SPHERICAL LENS FITTING GUIDELINES

A spherical over-refraction should be performed to determine the final lens power after the lens fit is judged acceptable. The spherical over-refraction should be combined with the trial lens power to determine the final lens prescription. The patient should experience good visual acuity with the correct lens power unless there is excessive residual astigmatism.

If vision is acceptable, perform a slit lamp examination to assess adequate fit (centration and movement). If fit is acceptable dispense the lenses instructing the patient to return in one week for assessment.

3. TORIC FITTING GUIDELINES

Although most aspects of the fitting procedure are identical for all types of soft contact lenses, including torics, there are some additional steps and/or rules to follow to assure the proper fit of toric lenses.

The only new steps you must follow for Clariti Toric lenses are that you must determine the stability, repeatability and drift angle of the lens axis so that you can prescribe the correct lens axis for your patient.
CLARITI CONTACT LENS

A. How to determine Lens Cylinder and Axis Orientation for Clariti Toric contact lenses.

1. Locate the Orientation Mark
 To help determine the proper orientation of the toric lens, you’ll find one mark about 1mm from the lens edge representing the vertical position of the lens at 6 o’clock. You’ll need a biomicroscope and a 1mm or 2mm parallelepiped to highlight the mark when the lens is fitted to the eye. There are a number of techniques which you can use to improve the visibility of the 6 o’clock mark. With your parallelepiped and medium magnification (10x or 15x), slowly pan down the lens, looking just below the direct illumination at the retroilluminated area. Backlighting the mark this way should make it more visible. Sometimes manipulating the lower lid may be necessary to uncover the mark.

2. Observe Lens Rotation and Stability
 Observe the position and stability of the 6 o’clock mark. The 6 o’clock mark is not a “must” however; the absolute requirement is that the axis position be stable and repeatable.
 The mark may stabilize somewhat left or right (drift) of the vertical meridian and still enable you to fit a toric lens for that eye, as long as the lens always returns to the same “drift axis” position after settling. The deviation can be compensated for in the final prescription. Your objective is to ensure that whatever position the initial lens assumes near 6 o’clock, this position must be stable and repeatable. With full eye movement or heavy blink, you may see the marks swing away, but they must return quickly to the original stable position. If the lens does not return quickly, you may need to select a different lens.

Assessing Rotation
Imagine the eye as a clock dial and every hour represents a 30° interval. If the orientation mark of the initial lens stabilizes somewhat left or right of the vertical position, the final lens will orient on the eye with the same deviation. You can use an axis reticule in the slit lamp or use a line-scribed lens in a spectacle trial frame to measure or estimate the “drift angle” of the cylinder axis. To compensate for this “drift”, measure or estimate the “drift”, then add or subtract it from the refractive axis to determine the correct cylinder axis. Use the LARS (Left Add, Right Subtract) method to determine which direction to compensate.

B. How to determine the Final Lens Power for Clariti Toric contact lenses.

When the diagnostic lens has its axis aligned in the same meridian as the patient’s refractive axis, a sphero-cylindrical over-refraction may be performed and visual acuity determined. However, in the case of crossed axes, such as when the diagnostic lens axis is different from the patient’s refractive axis, it is not advisable to over-refract because of the difficulty in computing the resultant power.

In fitting contact lenses, it is customary to prescribe the full power in the sphere. In the cylinder, however, any lens rotation is visually disturbing to the patient, so it’s more
practical to prescribe as weak a cylinder as possible. So, here is how to determine the final lens power.

For the Sphere:
If sphere alone or combined sphere and cylinder Rx>±4.00D, compensate for vertex distance. If sphere alone or combined sphere and cylinder Rx≤4.00D, vertex compensation is not necessary.

For the Cylinder:
Adjust the axis by the drift angle using LARS. Choose a cylinder that is ≥0.25D from the refractive cylinder.

Case Examples

Example 1
Manifest (spectacle) refraction:
O.D. -2.50 -1.25 x 180 20/20
O.S. -2.00 -1.00 x 180 20/20

Choose a diagnostic lens for each eye with an axis as close to 180° as possible. Place the lens on each eye and allow a minimum of 3 minutes for it to equilibrate, based on the patient’s initial response to the lens.

Check the orientation of the axis mark. If the bottom axis mark is in the 6 o’clock position on both eyes, choose the appropriate cylinder as listed previously.

Here is the Rx Prescribed/Ordered:
O.D. -2.50 -1.25 x 180
O.S. -2.00 -0.75 x 180

Example 2
Manifest (spectacle) refraction:
O.D. -3.00 -1.00 x 90 20/20
O.S. -4.75 -2.00 x 90 20/20

Choose a diagnostic lens of -3.00 -0.75 x 90 for the right eye and -4.50 -1.75 x 90 for the left eye, the nearest lenses available to the spherical power and axis needed. Place the lens on each eye and allow a minimum of 3 minutes for it to equilibrate. The orientation mark on the right lens rotates left from the 6 o’clock position by 10°.

The fitting indicates the following:

Right Eye
Compensate the 10° axis drift by adding it to the manifest refraction axis. Here is the Rx prescribed:

O.D. -3.00 -0.75 x 100

Left Eye
The lens on the left eye shows good centration, movement and a consistent tendency for the mark to drift right by 10° from the 6 o’clock position following a forced blink.

Since the manifest refraction called for a power of -4.75D, adjust for the vertex distance and reduce the sphere by 0.25D and prescribe the -1.75D cylinder. Compensate for the 10o axis drift by subtracting it from the manifest refraction. Here is the Rx prescribed: O.S. -4.50 -1.75 x 80.

If vision is acceptable, perform a slit lamp examination to assess adequate fit (centration and movement). If fit is acceptable, dispense the lenses instructing the patient to return in one week for reassessment.

4. MULTIFOCAL FITTING GUIDELINES

A. Presbyopic Needs Assessment and Patient Education.

Multifocal contact lenses may produce compromise to vision under certain circumstances and the patient should understand that they might not find their vision acceptable in specific situations (i.e. reading a menu in a dimly lit restaurant, driving at night in rainy/foggy conditions etc.). Therefore, caution should be exercised when the patient is wearing the correction for the first time until they are familiar with the vision provided in visually challenging environments. Occupational and environmental visual demands should be considered. If the patient requires critical visual acuity and stereopsis, it should be determined by trial whether this patient can function adequately with the Clariti Multifocal contact lenses for the correction of presbyopia. Clariti Multifocal contact lenses for the correction of presbyopia may not be optimal for such activities as:

1. Visually demanding situations such as operating potentially dangerous machinery or performing other potentially hazardous activities; and
2. Driving automobiles (e.g. driving at night). Patients need to ensure they meet state drivers license requirements and should be advised to not drive with this correction, OR may require that additional over-correction be prescribed.

Clariti Multifocal contact lenses for the correction of presbyopia are not recommended for patients who have -1.00 D or greater of refractive cylinder as this level of uncorrected cylinder may lead to additional visual compromise.

Clariti Multifocal contact lenses come in the following ADD powers:

Lens “LOW” = “low” for spectacle near ADD lens (Max +2.25 ADD)
Lens “HIGH” = “high” for spectacle near ADD lens (+2.50 ADD or greater)

B. Clariti Multifocal contact lens fitting guide

It is strongly recommended that the manufacturers fitting guidelines are followed to obtain an optimum visual result. The selection of ADD power should follow the fitting guidance in Table 1.
Step 1 - Determine:

Spectacle refraction distance and near: obtain vertex corrected, least minus most plus, best sphere (BS), distance vision correction with near addition.

Ocular dominance: wearing distance correction viewing 6/6 line binocularly pass a +1.50 DS lens alternately in front of each eye. The dominant eye is that for which the vision is least affected by the blurring lens. (Or see monovision eye selection)

Step 2 - Lens selection

Starting with BS for distance vision use the table below to select the initial trial lens:

<table>
<thead>
<tr>
<th>Ocular Dominance</th>
<th>Spectacle ADD</th>
<th>Spectacle ADD</th>
<th>Spectacle ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperopes</td>
<td>+0.75 to +1.75</td>
<td>+2.00 to +2.25</td>
<td>+2.50 and over</td>
</tr>
<tr>
<td>Dominant Eye</td>
<td>BS LOW</td>
<td>BS +0.25ds LOW</td>
<td>BS +0.25ds LOW</td>
</tr>
<tr>
<td>Non Dominant Eye</td>
<td>BS +0.25ds LOW</td>
<td>BS +0.50ds LOW</td>
<td>BS +0.25ds HIGH</td>
</tr>
<tr>
<td>Myopes</td>
<td>BS LOW</td>
<td>BS LOW</td>
<td>BS +0.25ds LOW</td>
</tr>
<tr>
<td>Dominant Eye</td>
<td>BS LOW</td>
<td>BS +0.50ds LOW</td>
<td>BS +0.25ds HIGH</td>
</tr>
<tr>
<td>Non Dominant Eye</td>
<td>BS LOW</td>
<td>BS +0.50ds LOW</td>
<td>BS +0.25ds HIGH</td>
</tr>
</tbody>
</table>

Table 1 fitting guidelines for initial lens selection for Clariti Multifocal contact lenses

- BS = best sphere as described in step 1 above
- LOW = Low Addition trial lens
- HIGH = High Addition trial lens

Examples of initial lens selection:

1) **Hyperope with right eye dominant**

Least minus /most plus vertex corrected prescription of:
Right Eye +1.75/-0.50 x 180 Left Eye +2.25DS ADD 2.50
Adjusted for BS: Right eye +1.50 DS Left eye +=2.25 DS

Initial lens selection using table 1:

Right eye +1.75 LOW (addition of +0.25 is made to BS and a LOW Add selected for dominant eye)
Left eye +2.50 HIGH (addition of +0.25 is made to BS and a HIGH Add selected for non dominant eye).

2) **Myope left eye dominant**
Least minus /most plus correction vertex corrected prescription of:
Right eye -3.00/-0.75 x 180 Left eye -2.75/-0.25 x 170 ADD 1.25
Adjusted for BS: Right eye -3.25
Left eye -2.75

Initial trial lens selection using table 1:
Right eye -3.25 LOW (no addition is made to BS and non dominant eye has LOW Add)
Left eye -2.75 LOW (no addition is made to BS and dominant eye has LOW Add)

Step 3
Allow initial lenses to settle for 20 minutes preferably encouraging this adaption period to occur outside the consulting room and in a ‘real world’ setting to better mimic normal viewing habits.

Step 4
Acquire patient’s subjective assessment of lens performance both distance and near using a 1-10 scale. Do this prior to taking visual acuity measurements.

Step 5
Assess distance and near vision binocularly and monocularly
Demonstrate the vision under various lighting conditions and at distance intermediate and near using wherever possible objects and viewing distances common to patient. E.g. computer, mobile phone, driving distances etc. Make adjustments in power as necessary (see multifocal troubleshooting below).

Step 6
Once distance and near vision are acceptable assess fit and centration of lens using slit lamp and dispense trial lenses with a follow up assessment appointment made for a week to ten days time. (See clinical assessment and follow up care).

C. Multifocal Troubleshooting

Unacceptable Distance Vision:
Starting with 0.25 DS steps and dominant eye using hand held trial lens, determine the amount of additional plus or least minus over one or both eyes that improves distance vision without affecting near vision.

Unacceptable Near Vision:
Starting with 0.25 DS steps and non dominant eye using hand held trial lenses determine the most plus least minus over one or both eyes that improves near vision without affecting distance vision.

Tips for multifocal fitting
- Careful patient selection and set correct expectations with them.
- Use up to date most plus least minus vertex distance corrected best sphere prescription.
- Adhere to manufactures suggested fitting guidelines.
- Assess vision in good illumination and with real life scenarios.
- Do not use phoropter or trial frame when assessing /improving vision use hand held trial lenses.
- Assess vision binocularly using hand held lenses.
- Use 0.25 DS steps when altering lenses. It is unusual for more than 0.25 DS changes to be needed.
- Take care when adding additional minus power for distance vision so that near vision is not affected.
- Always use the lowest ADD power possible to achieve acceptable near vision.
- If patient is happy with visual acuity do not attempt to refine to best Snellen acuity as with spectacle refraction. The proviso being subjective assessment is clinically and professionally acceptable.

5. MONOVISION (SPHERICAL AND TORIC FITTING GUIDELINES)

1. Patient Selection

A. Monovision Needs Assessment
For a good prognosis the patient should have adequately corrected distance and near visual acuity in each eye. The amblyopic patient with significant astigmatism (greater than one diopter) in one eye may not be a good candidate for monovision.

Occupational and environmental visual demands should be considered. If the patient requires critical vision (visual acuity and stereopsis) it should be determined by trial whether this patient can function adequately with monovision. Monovision contact lens wear may not be optimal for such activities as:

(1) Visually demanding situations such as operating potentially dangerous machinery or performing other potentially hazardous activities; and

(2) Driving automobiles (e.g., driving at night). Patients who cannot pass their state drivers license requirements with monovision correction should be advised not drive with this correction, OR may require that additional over-correction be prescribed.

B. Patient Education
Not all patients function equally well with monovision correction. Patients may not perform with this correction as they have with bifocal reading glasses. Each patient should understand that monovision, as well as other presbyopic contact lenses, or other alternative, can create a vision compromise that may reduce visual acuity and depth perception for distance and near tasks. During the fitting process it is necessary for the patient to realize the disadvantages as well as the advantages of clear near vision in straight ahead and upward gaze that monovision contact lenses provide.

2. Eye Selection

Generally, the non-dominant eye is corrected for near vision. The following test for eye dominance can be used.

A. Ocular Preference Determination Methods
Method 1 – Determine which eye is the “sight eye.” Have the patient point to an object at the far end of the room. Cover one eye. If the patient is still pointing directly at the object, the eye being used is the dominant (sighting) eye.

Method 2 – Determine which eye will accept the added power with the least reduction in vision. Place a trial spectacle near add lens in front of one eye and then the other while the distance refractive error correction is in place for both eyes. Determine whether the patient functions best with the near add lens over the right or left eye.

B. Refractive Error Method

For anisometropic corrections, it is generally best to fit the more hyperopic (less myopic) eye for distance and the more myopic (less hyperopic) eye for near.

C. Visual Demands Method

Consider the patients’ occupation during the eye selection process to determine the critical vision requirements. If a patient’s gaze for near tasks is usually in one direction correct the eye on that side for near.

Example:

A secretary who places copy to the left side of the desk will usually function best with the near lens on the left eye.

3. Special Fitting Considerations

Unilateral Lens Correction:
There are circumstances where only one contact lens is required. As an example, an emmetropic patient would only require a near lens while a bilateral myope may require only a distance lens.

Example:

A presbyopic emmetropic patient who requires a +1.75 diopter add would have a + 1.75 lens on the near eye and the other left without a lens.
A presbyopic patient requiring a +1.50 diopter add who is –2.50 diopters myopic in the right eye and −1.50 diopters myopic in the left eye may have the right eye corrected for distance and the left uncorrected for near.

4. Near Add Determination

Always prescribe the lens power for the near eye that provides optimal near acuity at the midpoint of the patient’s habitual reading-distance. However, when more than one power provides optimal reading-performance, prescribe the least plus (most minus) of the powers.

5. Trial Lens Fitting
A trial fitting is performed in the office to allow the patient to experience monovision correction. Lenses are fit according to the directions in the general fitting guidelines and a base curve selection described in the earlier guide.

Case history and standard clinical evaluation procedure should be used to determine the prognosis. Determine which eye is to be corrected for distance and which eye is to be corrected for near. Next determine the near add. With trial lenses of the proper power in place observe the reaction to this mode of correction.

Immediately after the correct power lenses are in place, walk across the room and have the patient look at you. Assess the patient’s reaction to distance vision under these circumstances. Then have the patient look at familiar near objects, such as a watch face or fingernails. Again assess the reaction. As the patient continues to look around the room at both near and distance objects, observe the reactions. Only after these vision tasks are completed should the patient be asked to read print. Evaluate the patient’s reaction to large print (e.g. typewritten copy) at first and then graduate to news print and finally smaller type sizes.

After the patient’s performance under the above conditions is completed, tests of visual acuity and reading ability under conditions of moderately dim illumination should be attempted. An initial unfavorable response in the office, while indicative of a guarded prognosis, should not immediately rule out a more extensive trial under the usual conditions in which a patient functions.

6. Adaptation

Visually demanding situations should be avoided during the initial wearing period. A patient may at first experience some mild blurred vision, dizziness, headaches and a feeling of slight imbalance. You should explain the adaptational symptoms to the patient. These symptoms may last for a brief minute or for several weeks. The longer these symptoms persist, the poorer the prognosis for successful adaptation.

To help in the adaptation process the patient can be advised to first use the lenses in a comfortable familiar environment such as in the home.

Some patients feel that automobile driving performance may not be optimal during the adaptation process. This is particularly true when driving at night. Before driving a motor vehicle, it may be recommended that the patient be a passenger first to make sure that their vision is satisfactory for operating an automobile. During the first several weeks of wear (when adaptation is occurring) it may be advisable for the patient to only drive during optimal driving conditions. After adaptation and success with these activities, the patient should be able to drive under other conditions with caution.

7. Other Suggestions

The success of the monovision technique may be further improved by having your patient follow the suggestions below:
• Having a third contact lens (distance power) to use when critical distance viewing is needed.
• Having a third contact lens (near power) to use when critical near viewing is needed.
• Having supplemental spectacles to wear over the monovision contact lenses for specific visual tasks may improve the success of monovision correction. This is particularly applicable for those:
• Patients who cannot meet state licensing requirements with a monovision correction.
• Make use of proper illumination when carrying out visual tasks.

Success in fitting monovision can be improved by the following suggestions:

• Reverse the distance and near eyes if a patient is having trouble adapting.
• Refine the lens powers if there is trouble with adaptation. Accurate lens power is critical for presbyopic patients.
• Emphasize the benefits of the clear near vision in straight-ahead and upward gaze with monovision.

* The decision to fit a patient with monovision correction is most appropriately left to the Eye Care Practitioner in conjunction with the patient after carefully considering the patient’s needs.

WEARING AND APPOINTMENT SCHEDULE

The wearing schedule should be determined by the prescribing Eye Care Practitioner for each individual patient, based upon a full examination and patient history as well as the practitioner’s experience and professional judgement. Patients should be given a wearing schedule and carefully instructed on the handling and care of their lenses as discussed in the Patient Insert. Also be sure to complete the personal wearing/replacement schedule record in the patient information booklet. The lens must be removed, cleaned, disinfected or disposed of and replaced with a new lens as determined by the prescribing Eye Care Practitioner. (See the factors discussed in the WARNINGS section.)

Follow-up examinations are necessary to ensure continued successful contact lens wear and to ascertain the effects of the lenses on the eyes. The following schedule is a suggested guideline for daily wear contact lenses:
• 24 hours post-dispensing
• 7 days
• 1 month
• 3 months
• every 6 months thereafter

LENS APPLICATION AND REMOVAL

Eye Care Practitioners should carefully instruct patients about the following lens care and safety precautions for application and removal of contact lenses.
Handling Precautions:

- Always wash and rinse hands before handling lenses. Do not get cosmetics, lotions, soaps, creams, deodorants, or sprays in the eyes or on the lenses. It is best to put on lenses before putting on makeup.
- Advise the patient to always handle the same lens, the right or the left, first in order to avoid mix-ups.

Lens Application:

Eye Care Practitioners should advise patients of the following steps when applying their lenses:

1. Examine the lens to be sure it is moist, clean, clear and free of any nicks or tears.
2. Make sure the lens is not turned inside out. Simply inspect the lens to see if the edges turn out. If they do, the lens is inside out. Should the lens be accidentally placed on the eye inside-out, one of the following signs should signal that the lens is to be removed and replaced correctly:
 - Less than usual comfort
 - The lens folds on the eye
 - Excessive lens movement on blink
 - Blurred vision

Eye Care Practitioners should advise patients of the following techniques for applying lenses:

One Hand Technique: Place the lens on the index finger. Keeping the head up, look straight ahead, pull down the lower eyelid with the middle finger of the placement hand. Look up steadily at a point above. Then place the lens on the lower white part of the eye. Remove the index finger and slowly release the lower lid. Look down to position the lens properly. Close the eyes for a moment: the lens will center itself on the eye.

Two Hand Technique: With the lens on the index finger, use the middle finger of the other hand to pull the upper lid against the brow. Use the middle finger of the placement hand to pull down the lower lid and then place the lens centrally on the eye. While holding this position, look downward to position the lens properly. Slowly release the eyelids.

If the lens feels uncomfortable, look in a mirror and gently place a finger on the edge of the contact lens and slowly slide the lens away from the nose while looking in the opposite direction. Then by blinking, the lens will re-center itself.

If after placement of the lens, the vision is blurred, check the following:
 a) Cosmetics or oils on the lens. Clean, rinse, disinfect and place on the eye again.
 b) The lens is on the wrong eye.
 c) The lens is inside-out (it would also not be as comfortable as normal).

Lens Removal

Eye Care Practitioners should advise patients that hands must be washed, rinsed and thoroughly dried with a lint free towel before removing lenses.
CAUTION: Always advise patients to be sure that the lens is in the correct position on the eye before trying to remove it (a sample check of the vision, closing one eye at a time, will tell the patient if the lens is in the correct position).

Instruct the patient to look up and slowly pull down the lower lid with the middle finger of the removal hand and place the index finger on the lower edge of the lens. Slide the lens down to the lower white part of the eye. Squeeze the lens lightly between the thumb and the index finger. Avoid sticking the edges of the lens together. Once removed, instruct the patient to follow the LENS CARE DIRECTIONS.

LENS CARE DIRECTIONS

1. Basic Lens Care Instructions

Eye Care Practitioners should review lens care directions with the patient, including basic lens care information and should provide the patient with appropriate and adequate warnings and instructions in accordance with patient’s lens type and wearing schedule. The Eye Care Practitioner should recommend an appropriate care system tailored to the patient’s individual requirements.

It is essential that patients understand and use good hygienic methods in the care and handling of their new lenses. Cleanliness is the first and most important aspect of proper contact lens care. In particular, hands should be clean and free of any foreign substances when lenses are handled. The recommended procedures for the patient are:

• Always, wash, rinse and dry your hands before handling contact lenses.
• Always use fresh, unexpired lens care solutions. Never re-use solution.
• Use either recommended system of lens care, either chemical (not heat) or oxidation (hydrogen peroxide) and carefully follow instructions on solution labelling.
• Different solutions cannot always be used together, and not all solutions are safe for use with all lenses. Do not alternate or mix lens care systems unless indicated on the solution labelling.
• Do not use saliva or anything other than the recommended solutions for lubricating or rewetting lenses. Do not put lenses in your mouth.
• Lenses should be cleaned, rinses and disinfected each time they are removed. Cleaning and rinsing are always necessary to remove mucus and film from the lens surface. Disinfection is necessary to destroy harmful microorganisms.
• Never rinse your lenses in water from the tap. There are two reasons for this:
 a. Tap water may contain impurities that can contaminate or damage your lenses and may lead to eye infection or injury.
 b. You might lose your lens down the drain.

3. Chemical Disinfection Method

• Clean one lens first (always the same lens first to avoid mix-ups), rinse the lens thoroughly with recommended saline or disinfecting solution to remove the cleaning
solution, mucus, and film from the lens surface, and put that lens into the correct chamber of the lens storage case. Then repeat the procedure for the second lens.

- After cleaning, disinfect lenses using the system recommended by the manufacturer and/or the Eye Care Practitioner.
- To store lenses, disinfect and leave them in the closed/unopened case until ready to wear. Lenses stored longer than 12 hours may require cleaning, rinsing and disinfecting again before use. The patient should consult the package insert or the Eye Care Practitioner for information on storing of lenses.
- After removing the lenses from the lens case, empty and rinse the lens storage case with solution as recommended by the lens case manufacturer, then allow the lens case to air dry. When the case is used again, refill it with fresh disinfecting/storage solution. Replace lens case at regular intervals.
- Do not heat the disinfecting solution and lenses.

4. Hydrogen Peroxide Disinfection Method

- Clean one lens first (always the same lens first to avoid mix-ups), rinse the lens thoroughly with recommended saline or neutralizing solution to remove the cleaning solution, mucus, and film from the lens surface, and put that lens into the correct chamber of the lens storage case. Then repeat the procedure for the second lens.
- After cleaning, disinfect lenses using the system recommended by the manufacturer and/or the Eye Care Practitioner.
- When using hydrogen peroxide lens care systems, lenses must be neutralized before wearing. Follow the recommendations on the hydrogen peroxide system labelling.
- Thoroughly rinse lenses with fresh saline or neutralizing solution before inserting and wearing or follow the instructions on the hydrogen peroxide system labelling.
- Do not heat the hydrogen peroxide solution and lenses.
- Leave the lenses in the unopened storage case until ready to put on the eyes.

Caution: Lenses that are chemically disinfected may absorb ingredients from the disinfecting solution, which may be irritating to the eyes. A thorough rinse in fresh sterile saline prior to placement on the eye should reduce the potential for irritation.

5. Care For a Sticking (Non-Moving) Lens

If the lens stops moving or cannot be removed, you should instruct the patient to apply a few drops of the recommended lubricating solution directly to your eye and wait until the lens begins to move freely on the eye before removing it. If non-movement of the lens continues, the patient is instructed to immediately consult their Eye Care Practitioner.

6. Care for a Dehydrated Lens

If a soft, hydrophilic lens is exposed to air while off the eye; it may become dry and brittle. If this happens, dispose of the lens and use a fresh one.

7. Emergencies
If chemicals of any kind (household products, gardening solutions, laboratory chemicals, etc.) are splashed into your eyes, you should: **FLUSH EYES IMMEDIATELY WITH TAP WATER AND THEN REMOVE LENSES PROMPTLY. CONTACT YOUR EYE CARE PRACTITIONER OR VISIT A HOSPITAL EMERGENCY ROOM WITHOUT DELAY.**

HOW SUPPLIED

Each lens is supplied sterile in a blister pack containing isotonic saline solution with 0.005% w/v poloxamer 407 added. The blister pack is labelled with the base curve, diopter for spherical lenses or toric power, cylinder axis for toric lenses, multifocal add for multifocal lenses, diameter, lot number, UV blocker and expiration date of the product.

Do not use if blister pack has been broken or damaged.

REPORTING OF ADVERSE REACTIONS

All serious adverse experiences and adverse reactions observed in patients should be reported to:

CooperVision
Attn: Product Services
711 North Road
Scottsville, New York 14546
(800) 341-2020
www.coopervision.com